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Abstract 

Background and Purpose: By evolving science, knowledge, and technology, we deal with high-

dimensional data in which the number of predictors may considerably exceed the sample size. The main 

problems with high-dimensional data are the estimation of the coefficients and interpretation. For high-

dimension problems, classical methods are not reliable because of a large number of predictor variables. In 

addition, classical methods are affected by the presence of outliers and collinearity.  

Methods: Nowadays, many real-world data sets carry structures of high-dimensional and outliers problems. 

In the regression concept, an outlier is a point that fails to follow the main linear pattern of the data. The 

ordinary least-squares estimator is potentially sensitive to the outliers; this fact provided necessary 

motivations to investigate robust estimations. To handle these problems, we combined the least absolute 

shrinkage and selection operator (LASSO) with the least trimmed squares (LTS) estimation.  

Results: Due to the flexibility and applicability of the semiparametric model in medical data, a penalized 

optimization approach for semiparametric regression models to simultaneously combat high-dimension and 

outliers in the data set. Based on the numerical study, it was deduced that the proposed model is quite 

efficient in the sense that it has a significant value of goodness of fit (MSE=1.3807).  

Conclusion: We have proposed an optimization approach for semiparametric models to combat outliers in 

the data set. Especially, based on a penalization LASSO scheme, we have suggested a nonlinear integer 

programming problem as the semiparametric model which can be effectively solved by any evolutionary 

algorithm. We have also studied a real-world application related to the riboflavin production. 
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1. Introduction  

The linear regression model can be shown 

as:  

𝒚 = 𝑿𝜷 + 𝜺,                             (1) 

Where 𝒚 = (𝑦1, … , 𝑦𝑛) T  is an  𝑛 × 1 vector 

of observations on the dependent variable,  

𝑿 = (𝒙1, … , 𝒙𝑝)  is an 𝑛 × 𝑝  matrix of 

observations on the explanatory variables 

such that 𝒙𝑖 = 

(𝑥1𝑖, … , 𝑥𝑛𝑖) T, 𝑖 = 1, … , 𝑝,  𝜷 = (𝛽1, … , 𝛽𝑝) T 

is a 𝑝 × 1  vector of unknown regression 

coefficients  and 𝜺 = (𝜀1, … , 𝜀𝑛)T is an 𝑛 ×

1 vector of the error terms with 𝐸(𝜺) = 0 

and 𝐸(𝜺𝜺T) = 𝜎2𝑰𝑝 . 

Outliers (i.e. points that fail to follow a 

partial linear pattern of the majority of the 

points) are a common problem in using the 

ordinary least squares (OLS) method. In 

such situations, robust regression methods 

are used to overcome undesirable effects of 

the outliers (inflated sum of squares, bias or 

distortion of estimation, distortion of p-

values, etc.). Outliers may be observed 

because of a recording error, a disruption in 

production processes, human errors, or may 

be formed differently from the large portion 

of the data. They may cause the wrong 

model formations, wrong parameter 

estimations or erroneous analysis results 

(1). The importance of these points were to 

the extent that the researchers made various 

definitions, which will be discussed in some 

of these terms: 

 An outlier is an observation that 

deviates so much from other 

observations as to arouse suspicions 

that is generated by a different 

mechanism (2). 

 An outlier is an observation (or subset 

of observations) which appears to be 

inconsistent with the remainder of the 

data set (3). 

 The outlier is viewed as an observation 

whose value is in the pattern generated 

by the other data (4). 

 Outliers are observations that do not 

follow the pattern of the majority of the 

data (5). 

 An outlier is an observation that lies 

outside the overall pattern of a 

distribution (6). 

 To be an influential one, a point should 

cause a dramatic change in the model 

after its deletion (7). 

A point (𝒙𝒊, 𝑦𝑖) which does not follow the 

linear pattern of the majority of the data but 

whose 𝒙𝑖  is not outlying is called a vertical 

outlier. A point (𝒙𝒊, 𝑦𝑖)  whose 𝒙𝑖  is 

outlying is called a leverage point. We say 

that it is a good leverage point when (𝒙𝒊, 𝑦𝑖) 

follows the pattern of the majority, and a 

bad leverage point, otherwise. After 

summarizing, a data set can contain four 

types of points: regular observations, 

vertical outliers, good leverage points, and 

bad leverage points. Of course, most data 

sets do not have all the four types (8). 

Figure 1 shows the types of points.  
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Figure 1. Types of points 

Semiparametric models have many 

applications. Engle et al. (1986) were 

among the first researchers who considered 

the semiparametric model to analyze the 

relationship between temperature and 

electricity usage, and found them to have 

highly nonlinear relationship. Yatchew 

(1997) estimated the relationship between 

variable costs of distributing electricity per 

customer as a nonlinear function of the 

scale of operation as measured by the 

number of customers.  

The course of high-dimensionality is 

another common problem in the modern 

statistical methods. In statistical theory, the 

field of high-dimensional statistics studies 

data whose dimension is larger than 

dimensions considered in classical 

multivariate analysis. As mentioned before, 

big data has been one of the hottest topics 

in computer science, data mining, 

engineering, and applied mathematics. In 

fact, various research activities surrounding 

the big data are so vast that they form a new 

discipline, namely, data science.  

There are many challenging issues 

associated with big data (12,13), and among 

them, the most important issue is the high-

dimensional data analysis. Even with some 

moderate size data, high-dimensionality 

can pose extra challenges. High-

dimensional data are relevant to a wide 

range of fields, such as biometric, medicine, 

e-commerce, network security, and 

industrial applications. In order to use data 

characteristics, proper techniques and 

methods are needed to handle such high-

dimensional data (14). 

Penalized regression can perform variable 

selection and prediction in a "Big Data" 

environment more effectively and 

efficiently in contrast to the other methods. 

Initially proposed by Tibshirani (1996), the 

LASSO (least absolute shrinkage and 

selection operator) is based on minimizing 
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mean squared error, which is based on 

balancing the opposing factors of bias and 

variance to build the most predictive model. 

LASSO regression is a simple technique to 

reduce model complexity and prevent over-

fitting which may result from simple linear 

regression. Ordinary least squares 

regression chooses the coefficients by 

minimizing the residual sum of squares 

(RSS), which is the difference between the 

observed and the estimated values, as 

follows: 

min𝜷{RSS} = min𝜷{𝐲 − �̂�} = min𝜷 {∑(𝑦𝑖 − ∑ 𝑥𝑖𝑗𝛽𝑗

𝑝

𝑗=1

)

𝑛

𝑖=1

}, 

LASSO is an extension of OLS which adds 

a penalty to the RSS equal to the sum of the 

absolute values of the non-intercept beta 

coefficients multiplied by parameter 𝜆 that 

slows or accelerates the penalty. That is, if 

𝜆 is less than 1, then it slows the penalty, 

while if it is more than 1, it accelerates the 

penalty. Therefore, the following 

optimization problem should be solved: 

min𝜷 {∑(𝑦𝑖 − ∑ 𝑥𝑖𝑗𝛽𝑗

𝑝

𝑗=1

)

𝑛

𝑖=1

} + 𝜆 ∑|𝛽𝑗|.

𝑝

𝑗=1

 

Increasing 𝜆 will increase bias and decrease 

variance.  Likewise, decreasing 𝜆  reduces 

bias and increases variance. A big part of 

the building, the best models in LASSO 

deals with the bias-variance tradeoff. Bias 

refers to how correct (or incorrect) the 

model is.  

There are several ways to choose the 

optimal 𝜆, such as AIC, BIC, 𝐶𝑝  and so 

on. For this purpose, one of the most 

popular methods is the cross-validation 

(CV) method.  

In order to find the optimal value of 𝜆, a 

range of 𝜆 values are tested and the optimal 

value is chosen using cross-validation. 

Cross-validation involves: 

 Separating the data into a training 

set and a test set, 

 Building the model in the training 

set, 

 Estimating the outcome in the test 

set using the model from the 

training set, 

 Calculating MSE in the test set. 

Rousseeuw (1984) introduced several 

robust regression estimators including least 

median of squares (LMS) and least trimmed 

squares (LTS) (see also the monograph 

(17,18)). LTS converges at rate 𝑛
1

2 with the 

same assymptotic efficiency under 

normality as Huber’s skip estimator. The 

LMS convergence rate is 𝑛
1

3  and its 

objective function is less smooth than LTS. 

As a consequence, as argued in (8), LTS is 

now preferred over LMS.   

LTS estimator is the solution of the 

following optimization problem: 

min𝜷 {∑ 𝑒(𝑖)
2

ℎ

𝑖=1

} ,            𝑠. 𝑡.            𝑒𝑖 = 𝑦𝑖 − �̂�𝑖 ,            (2) 

Based on the ordered absolute residuals 

|𝑒(1)| ≤ ⋯  ≤ |𝑒(𝑛)|,  where ℎ is the trimmed 

parameter.  When ℎ = [
𝑛

2
]  , the LTS 

estimator locates that half of the 

observations which has the smallest 

estimated variance. In that case, the 

breakdown point is 50%. When ℎ is set to 

the sample size, LTS and OLS coincide, i.e. 

�̂�𝑂𝐿𝑆 = �̂�𝐿𝑇𝑆. 

As discussed earlier, LASSO offers 

interpretable models, but it is not robust 

with respect to the outliers. The breakdown 

point of the LASSO is 
1

𝑛
 , that is, only one 
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single outlier can make the LASSO 

estimator completely unreliable. Therefore, 

robust alternatives are needed. In this 

situation, Alfons et al. (2013) suggested the 

sparse LTS estimator as follows: 

min𝜷,𝒛{𝜙(𝜷, 𝒛)} = min𝜷,𝒛{(𝒚 − 𝑿𝜷)T(𝒚 − 𝑿𝜷)

+ ℎ𝜆𝑝(𝜷)}, 

𝑠. 𝑡.      𝒆T𝑧 = ℎ, 

𝑧𝑖 ∈ {0,1},       𝑖 = 1, … , 𝑛, 

where 

𝒁 = [
𝑧1 … 0
⋮ ⋱ ⋮
0 … 𝑧𝑛

] , 𝒛 = [

𝑧1

⋮
𝒛𝒏

] , 𝒆 = [
1
⋮
1

], 

and 𝜆 is a penalty parameter. Alfons et al. 

(2013) show that the breakdown point of 

this estimator is 
𝑛−ℎ+1

𝑛
. 

Semiparametric regression models are 

appropriate models when a suitable link 

function of the mean response is assumed to 

have a linear parametric relationship to 

some explanatory variables, while its 

relationship to the other variables has an 

unknown form. Let 

(𝑦1, 𝒙1
T, 𝑡1), … , (𝑦𝑛, 𝒙𝑛

T, 𝑡𝑛)  be the 

observations that follow the semiparametric 

regression model, that is:  

𝑦𝑖 = 𝒙𝑖
T𝜷 + 𝑓(𝒕) + 𝜀𝑖 ,          𝑖 = 1, … , 𝑛,                 (3) 

where  𝒙𝑖 = (𝑥1𝑖, … , 𝑥𝑝𝑖) T  is a vector of 

explanatory variables, 𝜷 = (𝛽1, … , 𝛽𝑝) T  is 

an unknown p-dimensional vector 

parameter, 𝑡𝑖 ’s are design points which 

belong to some bounded domain 𝐷 ∈ ℝ , 

𝑓(𝒕) is an unknown smooth function and  

𝜀𝑖 ’s are random errors, assumed to be 

independent of  (𝒙𝑖, 𝑡𝑖). Surveys regarding 

the estimation and application of the model 

(3) can be found in the monograph of 

Härdle et al. (2000). Speckman (1988) 

studied partial residual estimation of 𝜷 and 

𝑓(𝒕) in (3), and obtained asymptotic bias                                           

and variance of the estimators. Roozbeh 

(2016) developed robust statistical 

inference for the model (3) for both 

heteroscedastic and correlated errors under 

general assumption 𝐸(𝜺) = 𝜎2𝑽 . For 

bandwidth selection in the context of 

kernel-based estimation in model (3), 

generalized cross-validation criterion has 

been used for optimal bandwidth selection 

(23-25). The difference-based estimation 

approach is optimal in the sense that the 

estimator of the linear component is 

asymptotically efficient and the estimator 

of the nonparametric component is 

asymptotically minimax rate optimal (26). 

Hall et al. (1990) extended the idea to 

higher-order differences for efficient 

estimation of the variance in such a setting.  

In fact, in the differencing method, the 

differencing matrix 𝑫(𝑛−𝑚)×𝑛 is multiplied 

to both sides of the model (3). That means:  

𝑫𝒚 = 𝑫𝑿𝜷 + 𝑫𝑓(𝒕) + 𝑫𝜺, 

So that 

𝑫 = [

𝑑0 ⋯ 𝑑𝑚 0 ⋯ 0 0

0 𝑑0 ⋯ 𝑑𝑚 ⋯ 0 0

⋮
0

⋮
0

⋮
0

⋮
𝑑0

⋮ ⋮ ⋮
𝑑1 ⋯ 𝑑𝑚

]  with ∑ 𝑑𝑗

𝑚

𝑗=0

= 0  and ∑ 𝑑𝑗
2 = 1.

𝑚

𝑗=0

 

Hall et al. (27) computed the optimal 

differencing coefficients numerically for 

𝑚 ≤ 10, as reported in Table 1. 
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Table 1. Optimal differencing coefficients numerically up to 10 

10 9 8 7 6 5 4 3 2 1 
    Order 

 

Weight    

0.9494 0.9443 0.9380 0.9302 0.9200 0.9200 0.8873 0.8090 0.8090 0.7071 d0 

-0.1437 -0.1587 -0.1751 -0.1965 -0.2238 -0.2600 -0.3099 -0.3832 -0.500 -0.7071 d1 
-0.1314 -0.1439 -0.1389 -0.1728 -0.1925 -0.2197 -0.2464 -0.2809 -0.309  d2 
-0.1197 -0.1287 -0.1224 -0.1506 -0.1635 -0.1774 -0.1901 -0.1942   d3 
-0.1085 -0.1152 -0.1069 -0.1299 -0.1369 -0.1420 0.1409    d4 
-00978 -0.1025 -0.0925 -0.1107 -0.0112 -0.1103     d5 
-0.0877 -0.0905 -0.0791 -0.0930 -0.0906      d6 
-0.0782 -0.0792 -0.0666 -0.0765       d7 
-0.0691 -0.0687         d8 
-0.0606 -0.0588         d9 
-0.0527          d10 

 

2. Methods and Result 

To illustrate the usefulness of the suggested 

strategies for high dimensional data in the 

semiparametric regression model, we 

consider the data set of riboflavin (also 

known as vitamin B2) production in 

Bacillus subtilis which can be found in R 

package "hdi" (28).  Riboflavin is one of the 

B vitamins which are all water soluble. 

Riboflavin is naturally present in some 

foods, added to some food products, and 

available as a dietary supplement. This 

vitamin is an essential component of two 

major coenzymes, flavin mononucleotide 

(FMN; also known as riboflavin-5'-

phosphate) and flavin adenine dinucleotide 

(FAD). These coenzymes play major roles 

in energy production, cellular function, 

growth, and development, and metabolism 

of fats, drugs, and steroids. The conversion 

of the amino acid tryptophan to niacin 

(sometimes referred to as vitamin B3) 

requires FAD. Similarly, the conversion of 

vitamin B6 to the coenzyme pyridoxal 5-

phosphate needs FMN. In addition, 

riboflavin helps to maintain normal levels 

of homocysteine, an amino acid in the 

blood. More than 90% of dietary riboflavin 

is in the form of FAD or FMN; the 

remaining 10% is comprised of the free 

form and glycosides or esters. Most 

riboflavin is absorbed in the proximal small 

intestine.  

The body absorbs little riboflavin from 

single doses beyond 27 mg and stores only 

small amounts of riboflavin in the liver, 

heart, and kidneys. When excess amounts 

are consumed, they are either not absorbed 

or the small amount, that is absorbed, is 

excreted in the urine. Bacteria in the large 

intestine produce free riboflavin that can be 

absorbed by the large intestine in amounts 

that depend on the diet. More riboflavin is 

produced after ingestion of vegetable-based 

than meat-based foods. Riboflavin status is 

not routinely measured in healthy people. 

The current EARs for riboflavin for women 

and men aged 14 and older are 0.9 mg/day 

and 1.1 mg/day, respectively, and the RDAs 

are 1.1 and 1.3 mg/day, respectively. RDAs 

are higher than EARs so as to identify 

amounts that will cover people with higher 

than average requirements. RDA for 

pregnancy is 1.4 mg/day and for lactation is 

1.6 mg/day. For infants up to 12 months, the 

Adequate Intake (AI) is 0.3-0.4 mg/day. A 

stable and sensitive measure of riboflavin 

deficiency is the erythrocyte glutathione 

reductase activity coefficient (EGRAC) 

which is based on the ratio between this 
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enzyme’s in-vitro activities in the presence 

of FAD to that without added FAD.  

There is a single real-valued response 

variable which is the logarithm of the 

riboflavin production rate. Furthermore, 

there are  𝑝 = 4088  explanatory variables 

measuring the logarithm of the expression 

level of 4088 genes. There is one rather 

homogeneous data set from 𝑛 = 71 

samples that were hybridized repeatedly 

during a fed-batch fermentation process, 

where different engineered strains and 

strains grown under different fermentation 

conditions were analyzed. To analyze this 

data, we first used the LASSO Method to 

specify a sparse model. To determine the 

penalty parameter, a 10-fold cross-

validation method was used with 70% data 

as a training set and 30% as a test set.  

 

Figure 2. The LASSO Plots 

 

In Figure 2, the 10-fold cross-validation 

and the coefficients estimation diagrams for 

different values of the penalty parameter 

are depicted. The LASSO Method selected 

64 variables. To detect the nonparametric 

part of the model we calculated: 

𝑠𝑖
2 =

1

𝑛 − 𝑝1 − 1
(𝒚 − 𝑿𝑛𝑒𝑤[, −𝑖]   �̂�)

T
(𝒚

− 𝑿𝑛𝑒𝑤[, −𝑖]  �̂�),            𝑖

= 1, … ,64,      (4) 

where 𝑿𝑛𝑒𝑤[, −𝑖]  was 6 obtained by 

deleting the ith column of the matrix 𝑿 

(29,30). Among all 64 remained genes, 

"PURR-at" had minimum 𝑠2 value, and so, 

it could be considered as a nonparametric 

part. We also used the added-variable plots 

to identify the parametric and 

nonparametric components of the model.  

Added-variable plots enabled us to visually 

assess the effect of each predictor, having 

adjusted for the effects of the other 

predictors. By looking at the added-variable 

plot shown in Figure 3, we considered 

"PURR-at" as a nonparametric part. The 

regression model is: 

𝒚 = 𝑿𝑛𝑒𝑤𝜷 + f(PURR − at) + 𝛆,                     (4) 

where 𝑿𝑛𝑒𝑤   is an 𝑛 × (64 − 1)  design 

matrix without "PURR-at" variable, with 

the explanatory variables, such that 𝒙𝑖 =

(𝑥1𝑖, … , 𝑥𝑛𝑖) 
T

,  𝑖 = 1, … , 𝑝 , 𝜷 =

(𝛽1, … , 𝛽(64−1)) 
T

 is a 𝑝 × 1  vector of 

unknown regression coefficients, and            
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𝜺 = (𝜀1, … , 𝜀𝑛)T  is an 𝑛 × 1 vector of error 

terms with 𝐸(𝜺) = 0 and 𝐸(𝜺𝜺T) = 𝜎2𝑰𝑝 . 

The differencing method was then used to 

separate the identified nonparametric part. 

In this example, the third-order differencing 

matrix was used. So, the specification of the 

new model is as follows:  

�̃� = �̃�𝜷 + �̃�,                                                  (5) 

where �̃� = 𝑫𝒚, �̃� = 𝑫𝑿  and �̃� = 𝑫𝜺 . 

In this section, we identified outliers using 

the diagrams in Figures 4 and 5. It was clear 

that there were outliers in the data set. 

Therefore, a robust method should be used 

to estimate the coefficients. Table 2 reports 

the estimation of the coefficients by the 

LTS Method. The mean squared error 

(MSE) value for this model was 

documented to be equal to 112.1112. 

 

 

 

 

 

 
Figure 3. The added-variable plot for "PURR-at" 
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Figure 4. Types of the points in data set 

 

 

 

 

 

 

 

 

 

 

Figure 5. Standard and student residual plot with leverage plot 
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Table 2. Estimation of the coefficients based on the LTS Method 

Parameter Estimation Parameter Estimation 

Intercept 0.0021 YHDS-r-at 0.4286 

ALD-at 0.0533 YIST-at -0.2288 

ARAM-at 0.4057 YISU-at 0.2021 

ARAN-at -0.1519 YKBA-at 0.1739 

ARGF-at -0.0703 YKNV-at 0.2523 

ARGH-at -0.1453 YKVJ-at 0.2999 

DEGA-at 0.5056 YLXW-at 0.1485 

ECSB-at 0.1056 YMAH-i-at -0.0971 

GAPB-at -0.0342 YMFE-at 0.0022 

GUTR-at 0.2502 YOAB-at -0.8605 

LYSC-at -0.2045 YOMT-at 0.4535 

METK-at -0.2365 YOSU-at -0.0629 

PHOA-at 0.0795 YPGA-at -0.2818 

PRIA-a -0.1879 YPUI-at 0.4879 

PYRAA-at 0.0358 YQED-at -0.1725 

sigM-at 0.0259 YQGJ-at 0.2432 

SPOIVA-at -0.6759 YQJT-at 0.4727 

SPOVAA-at 0.4881 YQJU-at 0.4641 

XHLB-at 0.0718 YRVJ-at 0.1293 

XKDB-at 0.0553 YTGB-at -0.0635 

XLYA-at 0.0401 YTSA-at -0.3836 

YACN-at 0.1966 YUID-at -0.0611 

YBFI-at 0.1348 YULC-at -0.1546 

YBXA-at 0.1362 YVFM-at 0.0305 

YCLB-at -0.0044 YWBI-at 0.0612 

YDAO-at -0.0938 YWRO-at -0.3544 

YDDH-at -0.3378 YXAF-at -0.1120 

YDDK-at 0.0055   YXIB-at 0.0122 

YEBC-at -0.9018 YXLD-at -0.3641 

YETH-at -0.2432 YXLE-at 0.0669 

YFHE-r-at 0.0735 YYBI-at -0.1588 

YFIO-at 0.6113 YYCO-at -0.4923 

 

 

In this phase, the researchers estimated the 

parameters using the sparse LTS Method. 

The "YCIC-at" variable was selected as a 

nonparametric part. The regression model 

is: 

𝒚 = 𝑿𝑛𝑒𝑤𝜷 + f(YCIC − at) + 𝛆,                     (5) 

where 𝑿𝑛𝑒𝑤 is an 𝑛 × (𝒑 − 𝟏) design matrix 

without "YCIC-at" variable, with the 

explanatory variables such that 𝒙𝑖 =

(𝑥1𝑖, … , 𝑥𝑛𝑖) 𝑇,𝑖 = 1, … , 𝑝,    𝜷 = (𝛽1, … , 𝛽(𝑝−1)) 𝑇 

is a 𝑝 × 1  vector of unknown regression 

coefficients and 𝜺 = (𝜀1, … , 𝜀𝑛)T is an 𝑛 ×

1 vector of error terms with 𝐸(𝜺) = 0 and 

𝐸(𝜺𝜺𝑇) = 𝜎2𝑰𝑝 . 
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Figure 6. Estimation of nonparametric part of model (5) 

Figure 6 shows the estimation of the 

nonparametric part. The optimal value of 

the penalty parameter was equal to 

0.0040871, and 63 explanatory variables 

remained in the model.  

The outliers can be seen in Figure 7, and it 

was clear that there were some outliers in 

the data set. Therefore, a robust method 

should be used to estimate the coefficients.  

 

 

 

 

 

 

 

 

 

Figure 7. Outlier detection plots 
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Table3. Estimation of the coefficients based on the sparse LTS Method 

Parameter Estimation Parameter Estimation 

Intercept 0.1487 YDHB-at 0.1027 

ALAS-at -0.1492 YDJL-at 0.0686 

ALST-at -0.1066 YFMF-at 0.1115 

CGEC-at -0.1173 YHJO-at -0.1865 

CITC-at -0.1469 YISH-at 0.1143 

CITR-at -0.0644 YKUH-at 0.4568 

LEUA-at -0.0181 YNGE-at 0.2526 

MENE-at -0.0200 YPBH-at 0.2395 

mrpF-at 0.2649 YQAD-r-at -0.4528 

MUTS-at -0.5433 YQDB-at 0.0022 

OPUBA-at 0.7186 YQHL-at 0.5141 

PADC-at -0.2245 YQJY-at -0.0908 

PRKA-at -0.0318 YQKD-at 1.2713 

PYRE-at -0.0355 YTPS-at 0.3151 

SDHA-at -0.2160 YTQB-at 0.3070 

SPOIIIAF-at -0.0244 YUSB-at -0.02733 

SRFAC-at 0.0914 YVDH-at -0.0033 

TAGA-at 0.0232 YVEA-at -0.2210 

TRER-at 0.0883 YWTB-at -0.4932 

YBBK-at 0.1109 YXKI-at -0.4932 

Table 3 reports the estimation of the 

coefficients by the LTS Method. As is 

shown in the table, the MSE for this model 

was equal to 1.3807. It should be noted that 

the MSE was equal to 148.9527 based on 

the nonrobust LASSO Method, and so, it 

was quite clear that the robust method 

performed better than nonrobust type. 

 

3. Discussion  

A range of procedures in robust techniques 

require optimization of an objective 

function over all the subsamples of the 

given size. Such combinatorial problems 

are often extremely difficult to be exactly 

solved. In this regard, we have proposed a 

penalized optimization approach for 

semiparametric regression models to 

simultaneously combat high-dimension and 

outliers in the data set. Especially, based on 

a difference-based scheme, we have 

suggested a robust programming problem 

using LTS regression estimation. The 

results of this work can potentially be 

extended to the case of heteroscedastic or 

correlated errors. However, the findings of 

the present study may be extended by 

revised Cholesky decomposition, QR 

decomposition, and extended least trimmed 

squares estimation to combat 

multicollinearity due of high-dimension 

and outliers problem in the data sets (31-

33). 
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